Effect of Nebulizer Type and Position on Aerosol Drug Delivery during Support Mechanical Ventilation and Spontaneously Breathing...

Conference Paper · December 2016

5 authors, including:

Andrew O'Sullivan
Aerogen
16 PUBLICATIONS 1 CITATION

Ronan MacLoughlin
Aerogen Ltd.
60 PUBLICATIONS 108 CITATIONS

All content following this page was uploaded by Ronan MacLoughlin on 13 December 2016.

The user has requested enhancement of the downloaded file. All in-text references underlined in blue are added to the original document and are linked to publications on ResearchGate, letting you access and read them immediately.
Summary
In tracheostomized patients the effect of nebulizer type/platform has not been studied in great detail. This study investigated tracheal dose delivery for a vibrating mesh nebuliser (VMN) and jet nebuliser (JN) in support (single limb) mechanical ventilation (SMV) and spontaneously breathing (SB) tracheostomized patients. Selection of nebuliser type can have a substantial influence when treating a patient. Earlier studies have shown that the VMN provides more aerosol than the conventional JN [1]. The nebulizer was placed at two positions during the SMV, 1) Dry side of the humidifier pot and 2) at tracheostomy tube (no spacers were used between the nebulizer t-piece and tracheostomy tube) and at the tracheostomy tube for SB. Results: the VMN delivered significantly greater % aerosol delivery when compared to the JN across all positions evaluated. The VMN proximal to tracheostomy tube during SMV facilitated the highest tracheal dose (50.76 ± 2.69%) compared with JN (15.69 ± 1.41%) at this position. Conclusion: the VMN delivered a significantly larger fractions of aerosol (P-values <0.05) when compared to the JN for the tracheal dose for all positions evaluated for SMV and SB in tracheostomy patients.

Introduction
The administration of nebulized therapeutic agents for SMV and SB tracheostomized patients is common in reducing pulmonary complications. Nebulizer type has been shown in previous studies to have large effects on the efficiency of nebulized drug deposition in the lung, during mechanically invasive ventilation [2] and spontaneously breathing patients [3]. However, in tracheostomized patients the effect of the type of nebulizer platform has not been studied in great detail. As part of this study, we investigated aerosol delivery from a VMN and JN in a humidified adult SMV circuit with a breathing simulator generating the adult SB. The nebulizer was placed at two positions during the SMV, 1) Dry side of the humidifier pot and 2) at tracheostomy tube (no spacers were used between the nebulizer t-piece and tracheostomy tube) and at the tracheostomy tube for SB. The objective of this study was to establish which nebuliser facilitates the highest drug delivery to the lung for a tracheostomized adult patient.

Methods
Aerosol delivery performance was evaluated by characterising the Tracheal Dose (%) (drug delivered beyond the trachea). A 2.0 mL dosage of Albuterol sulphate (1 mg/mL) was nebulised as a tracheal aerosol using a 1) vibrating mesh nebuliser (VMN) (Aerogen Solo, Aerogen, Ireland), with an average volumetric median diameter (VMD) of 4.73 µm and aerosol flow rate of 0.38 mL/min (measured using the Malvern Spraytec), 2) JN (Cirrus 2, Intersurgical, United Kingdom) with a driving gas flow rate of 8 LPM, with an average VMD of 4.14 µm and aerosol flow rate of 0.27 mL/min (measured using the Malvern Spraytec). At the end of each dose the drug was extracted and quantified using UV spectrophotometry (at 276 nm). The mass of drug eluted from the filters was determined using spectrophotometry and interpolation on a standard curve of Albuterol sulphate (200 µg/mL down to 3.125 µg/mL). Results were expressed as the percentage of the nominal dose placed in the nebulizer’s medication cup that was delivered.

Results
Based on the results presented in Figure 2, the VMN was seen to have a significantly greater % aerosol delivery when compared to the JN across all positions evaluated. For the SMV setup, the largest aerosol delivery in this study was observed for the VMN at the tracheostomy tube (50.76 ± 2.69%), this compared to the JN at 15.69 ± 1.41% (E). The % aerosol delivery for the dry side of the humidifier was substantially higher for the VMN at 26.28 ± 3.13% (B) when compared to the JN at 23.57 ± 1.36% (C). For the SB setup, the VMN with HME facilitated the highest drug delivery at 39.70 ± 0.84% (H), however a direct comparison for the JN with a HME was not completed as part of this study, as it was not possible to directly connect the HME to the T-piece of the JN without a series of connectors/adaptors. The only direct comparison completed as part of the tracheostomy SB study showed the VMN was also superior to the JN at 33.87 ± 2.90% (G) and 19.03 ± 1.03% (F). The lower delivered dose associated with JN was due to larger losses to the circuit as a result of the high gas flow and the residual drug remaining in the reservoir upon ceasing aerosol generation (Note: was not quantified as part of this study, but has been reported up to 50% remaining).%)

Conclusions
Results demonstrate that the VMN delivered significantly larger fractions of aerosol (P-values <0.05) for the tracheal dose for all positions evaluated for SMV and SB in tracheostomy patients when compared to the JN. The delivered aerosol dose for the VMN and JN was seen to range from 33.87-50.784 % and 15.88-23.57 % respectively, depending on position. The positioning of both nebulizers on the spontaneous breathing patients may require additional research as the position may not be clinically applicable due to the close proximity to the patient and therefore further evaluation should be undertaken to understand the influence of spacers placed between the nebulizers and tracheostomy tube on aerosol delivery.

References